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The problem of approximating a given function by spline functions with fixed
knots is discussed. Strict approximations which are particular unique best
Chebyshev approximations are considered. The chief purpose is to develop a
characterization theorem for these strict approximations.

INTRODUCTION

In this paper we consider the problem of approximating a given function f
in C(T) by spline functions with fixed knots. One of the difficulties lies in the
fact that a best approximation is not always unique. Therefore it is natural to
consider conditions which single out one of the best approximations. Rice
|3] defines a unique “strict approximation” for functions defined on a finite
set. But discrete approximation problems are closely related to problems on
an interval. Recently strict approximations were extensively studied. It is
possible to determine these approximations by methods known as ascent
methods.

The chief purpose of this paper is to develop characterization theorems for
strict approximations in subspaces of spline functions.

Rice [3] and Schumaker [4] established characterization theorems for best
approximations to functions f defined on an interval.

In Section 2 we shall extend these results to the problem where T is a
compact subset of R and the subspaces of spline functions satisfy certain
boundary conditions.

These results will be used in Section 3 in order to characterize strict
approximations. First we single out a uniquely determined function in the set
of best approximations by an inductive definition. Then we shall show that
this best approximation is the strict approximation in the sense of Rice.
Using our definition it is possible to establish a characterization theorem for
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strict approximations (Theorem 3.10). Moreover our definition can be
applied to problems defined on an interval.

In Section 4 we shall consider such approximation problems and shall
show the difficulties which arise from these problems. Then we define for a
great class of continuous functions uniquely determined best approximations
which can also be considered as strict approximations.

The characterization theorem is very useful for developing an algorithm
which determines the strict approximation. In a farther paper we shall
establish such an algorithm.

l. PRELIMINARIES
Let 7 be a compact subset of =, let C(7T) be the normed linear space of all

continuous real-valued functions defined on 7 and let the space C(T) be
normed by

Wil = max ().

Suppose [ is a function in C(T) and G =spanig,.... g,} an n-dimensional
subspace of C(T). Then we consider the linear Chebyshev approximation
problem: For every function f in C(7}) we define the set of best approx-
imations to f out of G by

Po(f) =18, EG:||f — gyl =inf{||/ — gl: g € G}}.

We shall use the notations

y (’rl,....z,, ‘):
Zivr &y

where {#;}7 | is a subset of T, we denote by E(f) the set of extremal points
of the function f (on T)

&) gl

gikty) o gally)

E(f)={xeT:\f(x)| =/}

and we call points ¢, <--- <t, in T alternating extremal points of f if

D1 @) =1l i = T b n € {=1. 1),
The following theorem is well-known (see Watson |7, p. 50]).
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THEOREM 1.1. A function g, is an element of P,(f) if and only if there
exists EcC E(f — g,) containing h<n+ 1 points t,....,t, and a nontrivial
vector A € R, such that

where 0, =sign((f — g ){#;)), i = 1,..., h.

In later sections we shall also consider approximation problems on a
subset U of 7. A function g, in G is called a best approximation to a
function fon U (out of G) iff

I/ = g ol = inf {max | /() — g

A subset U= {u,,...,u,, } of T is called a reference iff

has rank n.

Suppose that the subset U= {u,,...,u,,,} in T is a reference. Then there
exists a unique solution (up to a scalar) of the linear system A74,, = 0, where
AT =(A{yu A, ;) is a nontrivial vector in R, ,. We obtain

Uy e U qUypyq oo Upyy

Ai=c-(=1) det4 (
( ) &1 o &n

), ceR. (L1

Let g, be a function of G satisfying

S(u) = gouy) = noI(f — go) lull,
o, =4/l foralld;#0 (1.2)
o, € {—1,1} elsewhere

where 4, is defined in (1.1). Then it follows from Theorem 1.1 that g, is a
best approximation to f on the reference U. We call y=||(f — g,) |, the
reference deviation.

A subspace G satisfies the Haar condition if g € G, g(x) =0 at n distinct
points of T implies g =0. In this case the best approximation is always
unique.

640/41/4-2
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2. CHARACTERIZATION THEOREMS

In this section we shall study approximation problems for subspaces of
polynomial spline functions. Let A denote the partition a =x, <x, < -+ <
X, <X,,;=>b on the interval |a,b). The subspace §,(4) of polynomial
spline functions of degree m (m > 2) with simple fixed knots at 4 is defined
by

Spd)y=1{s€C" la,b|:s | ., EM, | i=0...k}

where 11, , denotes all polynomials of degree <m — 1.

Let be T=la,b| and G=S,(4) in the approximation problem of
Section 1. Rice [3] and Schumaker [4] established characterization theorems
for the best approximations of this problem.

In our investigations it will be necessary to study approximation problems
defined an a compact subset T of [x,,x,. |- Moreover, we consider
subspaces of §,(d4) satisfying boundary conditions. Therefore we shall
extend the results of Rice and Schumaker to these problems. The following
notation is used throughout the paper: K, is the class of closed subintervals,
K, and K, are the classes of half-open subintervals of the form (u.v]| and
|u, v), respectively; K, is the class of open subintervals. We shall denote by
1, , a subinterval with boundary points x, and x, where x, and x, are knots
of the subspace of spline functions. Then 7, ,=[x,.x | if [, , €K, . [, =
(. x,| if I, €Ky, I, =Ix,,x,) if [, ,€K, and [, =(x, x,) if
I, €K,

Using these notations we shall define the following subspaces: Let T be a
compact subset of [x,, x, | and let [ be a subinterval such that (x,, x,.,) <
I<|xg,x,, (|- Then

S, (L.Ty={s|;:s €S, (4)
if 1€ K, then s'V(x,)=0,i=0,..m—2.
if 1€ K, then s (x,,,)=0, i=0....,m— 2,
if 1€ K, thens'?(xy)=5s""(x,, ) =0.i=0....om — 2}.

If T=|x,,x,,,| then we denote S,(I,T) by S,(/). Notice that S,(/.T)
satisfies boundary conditions in x, or x,_, if the interval / is not closed. If
1€ K, then §,({)=S,(4). We see that the interval { also determines the
boundary conditions of the subspace in consideration.

These notations will be very useful in Section 3.

Remark 2.1. Let 4 denote the partition x , , < <X, < <
Xy <o <Xy, where n=m + k. Let I=(x_,,,,.x,) I=[x.%,,,] and
S € C(T). where T is a closed subset of I. Then S, (/. T)=S,(/.T). This is
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also true if I=(x_,, ;,Xx, | Oor I=[xg,x,). Therefore it is sufficient to
establish characterization theorems for best approximations only for the case
G = S,(I, T). The other cases will immediately follow from these results.

A local basis of S, (I) will be very useful. Let M, be the mth order B-
spline associated with the knots x;,..., x;, ,, (see [5, p. 118]). Then

Su(l)=span{M_,,, s M,,_ ).

If we consider S,,(Z, T) then we also denote M, |, by M,.
Let T be a closed subset of I and U= {u;}}_, = T. Then

U oo u
A( 1 n)
M—m+1 Mk

has rank »n if and only if
X i <U < X5,y i=l,..,n (2.1)

(see [5]). Therefore the dimension of Sm(f, T) is n, iff there exists a subset
U c T satisfying (2.1).
Now we want to prove the following lemma.

b mi1s m>=22 and n>1, be

LEMMA 2.2. Let the partition 4= {x
(u,}t+! be a subset of I where

given, let I=(x_,.,,x,) and let T=
X g U< <U, 1 <X,

i}
u

(a) Then there exist positive integers p and q, 1 < p<g<hn, and a
subset {v }42) c TN (X_,,,,X%,) such that

Vi€ (X i Xio ) i=p+1,.,4q (2.2)

Ifp>1then v, >x,

(b) Let the dimension of S,(I,T) be n. Then there exist positive

integers p and q, 1 < p < q < n, such that {u}i2) < (x_,.,,x,) and

andifg<nthen v, <X _ 44

uie(x—m+i’xi~l)9 l:p+ 1’“'5qs
U; € (X_ i Xi)s i=1,.,p, (2.3)

U € (X i X1)s i=q,.., "

Ifp>lthenu,>x, ,andif q<nthenu, <X_,, 4.1-

Proof. We shall only prove (b). The proof proceeds by induction on £.
The case n =1 can be easily shown. Set p =¢ =1 then (2.3) is satisfied. We
assume that the result has been established for n — 1. Now we show the
assertion for #. It is necessary to distinguish the following cases:
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(i) Suppose that u; € (x_,, ;s %;_) i=2...n Thenp=1and g=n
are the desired positive integers.

(i) Let w,, , <x_,, 4, for some A where 1 <A n— 1. Then we
apply the induction hypothesis to the subset {u,...., 4, } and the subinterval
(X_ms1sXs) Hence there exist p and g, 1 < p<g<h. such that {u,/ "/
satisfies (2.3) on (x_,,,,.x,). If g=h then u,, , <x ,_.,., and if ¢ <h
then it follows from the induction hypothesis that u, ,<x ., .,
Moreover, we conclude from (2.1} that w,, € (x_,, .. X) (=¢... "
Therefore the integers p and ¢ also satisfy (2.3) for T on 1.

(iii) Let u,>x,_, for some A where 2<h<n This case an be
similarly proven.

The assertion (a) can be similarly shown.

According to this lemma we shall define subsets which are associated with
subintervals. This notation will be very important for our approximation
problems.

Let A={x7 _,.., be given, let [=(x ,.,.x,) and R=ju;¢ .

1 < p<g< n, be a subset of [. We call the subset R associated with a subin-
terval J,, iff R < J, where

/(X—m»l‘xn) p:1*q2’1~
|X,_ 1. X,) p> Lg=n,
Je={ T if (2.4)
(x-mwl'x m+q+ll p=1Llg<n
\pr—l*x m+q+l| p> l,q<n.
U EAX s Xis h i=p+ l..g

First we obtain the following result:

n

THEOREM 2.3. Let the partition 4= {x,\" ... be given, let [=

(X_yi1sXx,) and let R = {ui}?,_*,} be a subset of T which is associated with a

subinterval Jg. Then the following assertions will hold:
(a) The subspace S,,,(i, R) satisfies the Haar condition.

(b) There exists a reference R, = {u;}; " in [ satisfving R < R, and

Sioa if u;€R,

det(4;) =
etld,) 20 elsewhere
forall i=1..,n+1 where
Al:A( ul ui—lui+l un’l)'
\M—rm+1 Mn—m
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(c) Let R, be a reference. Then there exist unique integers p and q
satisfying (2.3).

Proof. (a) We see that S, (I, R)=S,,(Jg,R). It follows from (2.1) and
(2.4) that

ed (| e

g+1
%0
A47m+p o M )

—m+q
for all i= p,...,q + 1. Hence Sm(f, R) satisfies the Haar condition.
(b) We define R, such that w,€(x_,,;,x;), i=1..,p—1, and

Uiy 1 € (X_pyyis Xi)s § = Gyey 1. It is Obvious that R, = {u,;}7* is a reference.

Let V; = {u) s Uy, }\{4;} = {v;}7_ . Suppose that u; € R. Then it follows
from (2.1) and (2.4) that det(4,) + 0. Suppose that u; € R. Let i < p then we
conclude from (2.4) that (x_,,,x,_;) contains only the points u,,..,u, ,.
Hence {u,,..,u, ;}\{u;} = {vy,..,v,_,} and v, ;>x, ,. The conditions
U, € (X_,,.i %), i = L., p— 1, cannot be satisfied and the rank of 4; is less
than n. Similarly the case i > g + 1 can be proven.

(c¢) Let (p,,q,) and (p,,q,) be integers satisfying (2.3). Then it
follows from the above arguments that det(4,)#0, iff i = p,,...,q, + 1 and
det(4;) # 0, iff i = p,,....,q, + 1. This contradiction completes the proof.

Now we are able to give characterization theorems for our approximation
problem.

THEOREM 2.4. Let the partition 4= {x}7. ., be given and let I=
(X_me1>Xx,). Let T be a compact subset of I such that dim(S (I, T)) = n.

(a) Then s, in S, (I, T) is a best approximation to a function f in C(T)
out of S, (I, T) if and only if there exists a subset R = {u;}?% ) of T which is
associated with a subinterval J, of the form (2.4) such that

(f =sduy=n(=D)"I(f =),  i=poug+ln€{-11} (2.5)
(b) If s, is a best approximation where s, + s, then

So(x)=15,(x) forall x€&€J,.

Proof. (a) Let s, be a best approximation. It is well-known that every
s€ S,(I, T) has at most n— 1 sign changes, i.c., there do not exist n + 1
points ¢, <t, < --- <t,,,in T with s(t;}s(t;,.,) <0, i=1,...,n

Then it follows from a theorem in ([2,p.23]) that there exists a
5,€Ps(f) G= Sm(f, T), such that f—s, has at least n+ 1 alternating
extremal points. Hence we conclude from Lemma 2.2(a) that there exists a
subset R which is associated with a subinterval J, satisfying the condition
(2.5).
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For the converse we assume that s, is a function satisfying (2.5). Then it
follows from Theorem 2.3 that there exists a reference R, = {u;}?’' which
contains R. We conclude from Section 1 that there exists a unique vector A =

(Ayses Ays )T (up to a scalar) satisfying

ETA( o i) <o
M—m+l o M

n--m/'

It is well known that

detA( i

for all x_,, , <t <t,<--<t,<x,. Thus we obtain from (l.1) that 4, -
A1 €0, i=1,.,n It follows from Theorem 2.3(b) that 4;#0 iff i€
{ Py q + 1}

_Therefore nd; sign((f — so)(#;)) >0 for i=1...n+ 1, y € {—1, 1{. Hence
nA is a vector satisfying the conditions of Theorem 1.1 and s, is a best
approximation to fon R,. It is obvious that s, is also a best approximation
on T. This completes the proof of (a).

(b) It follows from (a) that
max | f(x) —5,(x)| < max [ f(x) — s,(x).

We conclude from Theorem 2.3(a) that Sm(1~, R) satisfies the Haar condition.
Hence s,(x)=s,(x) for all x€ R and it follows from (2.1) and (2.4) that
(5o — s, x)=0 for x & J,.

It will be necessary to establish characterization theorems for all kinds of
boundary conditions. Therefore we have to define subsets associated with
subintervals of the form (2.4) for all classes of subspaces.

DEFINITION 2.5. Let the partition 4 = {x;}5-) be given and let / be an
interval such that (x,,x,.,) << |x,.x,,,]- We call a subset R = {u;}{",
associated with a subinterval J, relative to S, (), iff R and J,. R< J,.
satisfy the following conditions:

(a) Let [€K,. ie. S,(I)=span{l..x" ' (x—x)" ..
(x—x )T e Tg =% X g and w, € (X, nx ) i=p ot Leg.

(b) Let I€K,, ie., S,(I)=span{(x —xo)7 "y (x = x )7 "} Jp=
(xgsxg) if p=1, Jg=[Xp1m 2sX,] if p>1 and 4, € (x; |, %, 1) I=

P+ l..q
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(c) Let I€K,, ie, S,(I)=span{(x,—x)7 'y, (Xep;—x)7 '}
Je= X, 1o X)) if g=k+ 1, Jg=1[x,_1,x_p,qu:] f g<k+1 and y; €
(x~m+i’xi—1)’ i=p+l..,q.

(d) Let I€eK, and k>2m—1, ie, S,()=span{My,..M,_,, }:
Je=xp, X, )ifp=lLg=k—m+2;Jg =[x, p_2,X41)ifp> 1L g=k—
m+23Jg=xp,x, ] if p=1,g<k—m+2; Jg=|x,, p_2X,]ifp>1,g<
k—m+2and u; € (X;_,, X, 2 i=p+ L. q.

Then we obtain the following result:

THEOREM 2.6. Let the partition A= {x,\**| be given, let I be a subin-

terval such that (xo,x,,,) <1< x4, X, | and let T be a compact subset of
1 satisfying dim(S,,(I, T)) = dim(S,,(1)).

(a) Then a function s, is a best approximation to a function f in C(T)
out of S,(I,T) if and only if there exists a subser R = {u;}?*,) which is
associated with a subinterval J, such that

(S =s)@)=n(=D"If =),  i=pesg+l, n€ (=11} (2.6)

(b) If s, is a best approximation where s, # s, then s,(x)=s,(x) for
all xe J,.

Progf. Theorem 2.4 and Remark 2.1.
For S,,(I,T)=S,,(4) the statements of Theorem 2.6 are due to Rice {3,
pp. 151, 152] and Schumaker {4].

3. CHARACTERIZATION THEOREMS FOR STRICT APPROXIMATIONS

The best approximations of Section2 are not uniquely determined in
general. Therefore it is natural to consider conditions which single out one of
the best approximations. Descloux [1] and Rice [3] considered the so-called
strict approximation. First we shall state the definition of these best approx-
imations (see [3]). Let f be a function of C(T), where T is a finite subset of
R and let G be an n-dimensional subspace of C(T). Suppose g, is a best
approximation from G to fon 7. A subset .S of the extremal points of f — g,
is said to be a critical point set if g, is a best approximation to fon § but is
not a best approximation to / on any proper subset of S.

It follows from Theorem 1.1 that a critical point set contains at most
n + 1 points.

Now we are able to define strict approximations.

DeriNITION 3.1. Let a finite subset 7 of R be given. Let f be a function
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in C(T) and G be an n-dimensional subspace G of C(T). Set G,= G and
T, =@. Then we define for j > 1

Gy=1{£ € G;_ s max|(f — &)(x)| < max|(/ — g)(x)
for all x € T\T,_, and all g€ G, _,}.

Denote by H; the set of critical point sets with respect to a function g; € G,
and denote by V', the set of points which are contained in a critical point set
of H;. Set T,=T,_,UV,. The construction is continued until 7=T, for
some /. The members of G, are said to be strict approximations to fon T.

The strict approximation is unique (see |3, p. 243}).
Next we shall determine the critical point sets of our approximation
problems in Section 2.

THEOREM 3.2. Let the assumptions of Theorem 2.6 be given and let s,
be a best approximation from S,(I,T) to a function f in C(T). Then the
following conditions are equivalent:

(a) The subset R — T is a critical point set.

(b) The subset R = T is associated with a subinterval J, relative to
S,.(I) and [ — s, has alternating extremal points on R.

Proof. (a)- (b). It follows from the definition of critical point sets that
s, is a best approximation to the function f on R. Hence we conclude from
Theorem 2.6 that there exists a subset R, © R associated with a subinterval
such that f — s, has alternating extremal points on R,. If R, is a proper
subset of R then s, is also a best approximation on R,. This contradiction
completes the proof.

{(b)— (a). We conclude from Theorem 2.6 that s, |; is a best approx-
imation from S _(J,,R) to f|;. Let ¢ be a point of R and R, = R\|t} =
{v;17-,. Then it follows from the assumptions on R that ¢; € (x _,, ;. %;). /=
D»-y @, and from (2.1) that /|, € S,,(Jz, R,). Hence s, is not a best approx-
imation to f on R,. This proves the theorem.

Remark 3.3. 1t follows from Theorem 2.3(c) that a best approximation
on a reference has a unique critical point set.

DEerFINITION 3.4. Let the assumptions of Theorem 2.6 be given and let s,
be a best approximation from S,,(I, T) to fin C(T). Suppose R is a critical
point set. Then there exists a subinterval J, which is associated with R. We
call this subinterval J, associated with the critical point set R. Let s, be a
best approximation to f on a reference U < T and let J,, be the subinterval
associated with the unique critical point set of U/. Then we call the subin-
terval J, to be associated with the reference.
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It follows immediately from Theorem 2.6 and Theorem 3.2 that s, =
sy l;, if 5o and s, are two best approximations and J, is a subinterval
associated with a critical point set relative to s,. Hence the best approx-
imations are uniquely determined on subintervals which are associated with
critical point sets. Using this property we shall see that it is possible to
define strict approximations otherwise than in Definition 3.1.

First we shall give the following notation:

Let the assumptions of Theorem 2.6 be given and let s, be a best approx-
imation from §,,(, T) to f in C(T). Suppose that H is the set of all subin-
tervals I, . associated with a critical point set of /' — s,. Then we denote by
I, the following set:

Iy, = {x: there exists a subinterval I, , € Hsuchthatx €/, ,}

U {x: there exist subintervals I, .1, ., < H such that

0< Pj_‘IiQm_landxe(xq.-’xp,-)}'

We want to give some examples of critical point sets.

ExampLE 3.5. (a) Let the subspace G =span{l,x,(x—1),,(x—2),}
be defined on the interval 7= [0, 3] and let the subset 7= {1/3, 1/2, 2/3,
3/2, 1/3, 5/2, 8/3} be given. Suppose that f is a function in C(T) satis-
fying f(1/3) = /(2/3)= S(5/) =1, f(1/2)=f(1/3)=f(8/3)=—1 and
S(3/2)=0. It is obvious that 0 is the unique best approximation. The subsets
R,=1{1/3,1/2,2/3} and R,=1{7/3,5/2,8/3} are critical point sets
associated with the subintervals 7, = [0, 1] and 7, = [2, 3], respectively. The
interval I is not associated with a critical point set. On the other hand, /,, is
the interval [0, 3].

(b) Suppose that the subintervals I, and 7 satisfy x, <x,, <

1,41 p2.q2
Xq,<Xg and I, .. 1, . are subintervals associated with critical point sets.
We shall show by an example that the subinterval I, . UJZ, . is not

associated with a critical point set in general. Let the subspace G =
span{l, x, (x — 1), , (x —2),, (x — 3), } be defined on the interval I = [0, 4]
and let the subset T={1/3, 2/3, 4/3, 5/3, 5/2, 10/3, 11/3} of I be given.
Suppose fis a function on T such that

S(/3)=f(4/3)=f(5/2) = F(11/3) =1,
S2/3)=f(5/3)=/(10/3) = -1
It follows from Theorem 2.6 that 0 is a best approximation from G to fon T.
The subintervals I, = [0, 2] and I, = [1, 4] are subintervals associated with

critical point sets. But it can be seen that 7 is not an interval associated with
a critical point set.
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For our investigations it is necessary to show some properties of critical
point sets. We shall always consider the following approximation problem:

PrROBLEM Al Let the partition 4= {x," ., be given, let I=
(X_ms1-X,) and T be a compact subset of 7 such that dim(S,,(I, T)) = n. We
denote by s, a best approximation to fin C(T) out of G=S8,(1. 7).

According to Remark 2.1 the other cases follow immediately from this

approximation problem.

LEmMMA 3.6. Let Problem Al be given and let H be the set of all subin-
tervals associated with a critical point set of f —s,. Then I, has the form

t
[": U [m.qu"
i1

X | =Xp, KX, <X <o KX, <X KX, =X

—m+
and satisfies the conditions

(a) pp=—m+lorl<p,qg=norqg<n—m

1111 qlz(x—erl*xq]l’ if pyp=—m+1g,<n—m,
Ly q,= [Xp,s Xn), if p>1lg,=n

Ly gy = (X s X, if pp=-m+1,q,=n,

L, 0= X0 Xo. 1 < 1x1, X, _ | elsewhere.

(b) pi.,—q;izmforalli=1,..t—1.

Progf. (a) Theorem 2.4 and Theorem 3.2.

{b) This condition follows from the definition of /,,.

In the next lemma we shall state an important property of the subset /,,.

LEMMA 3.7. The best approximations are uniquely determined on the
subset 1.

Proof. 1f 1, is a subinterval associated with a critical point set then it
follows from Theorem 2.6(b) that the best approximations are uniquely

determined on /,. Now let /, , and I, .  be subintervals satisfying 0 <
Pi.1—4q;<m—1 then a spline function s on (x,,x, ) is uniquely deter-
mined by s |, and s |, y . This completes the proof

This lemma enables s fo give another inductive definition of strict
approximations.
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DErINITION 3.8. Let the partition 4 = {x;}%*4 be given, let I = [x,, X, |
and S, (I)=span{M_, ... M,}, where {M;} is the local basis defined in
Section 2. Suppose that T is a finite subset of I.

Set Gy = S,,(I, T), Hy,= @ and let Z, be the set of integers {—m + 1,..., k}.

Then we define for j > 1 the following sequence of functions s;:

Let (7 be the set of best approximations to the function f —
(s, + - s 1) on T\, |} out of span{{M},., ,} and let s5; be a
functlon in G;. We denote by H the set of all subintervals in FAV - whxch
are assocnated with a critical point set of f — (s, + --- +5,). Then we define
Hj:Hj_luﬁj and

Z,={i€Z; ' {x: Mx)# 0} NI, =2}

The construction is continued until Z, = @& for some r. Then we denote by
g(f) the function s, + --- +s,.

We shall see that this inductive definition determines the strict approx-
imation.

THEOREM 3.9. Let the partition 4 = {x;}%*, be given, let I = |xq, %, , ]
and S,(I, T), where T is a finite subset of I. Then the function g(f’) defined
in Definition 3.8 is the strict approximation to f out of S,,(I, T).

Proof. We shall use the notations of Definition 3.1 and Definition 3.8.

Let G,,..., G, and Gl yeees G, be the sets of best approximations in these
definitions. It follows immediately that G, = G,. Lemma 3.7 implies that the
set of best approximations is uniquely determined on the subinterval I,.
Therefore we restrict ourselves in the next approximation problem in
Definition 3.8 to the subset 7'M {I\I, }. In Definition 3.1 the next approx-
imation problem is defined on 7\V,, where V, is the set of points which are
contained in a critical point set of H,. It can be seen that there exists an
index v,, v, > 1, such that G, = {s, +s:5€ G,}. Using these arguments we
can show that there exists mtegers v; such that G, ={s, + - +5,_, +5:
s 6 G, i 1= 1,..,r. The set G contains exactly one function. Therefore G, =

= {g(f)}. This completes the proof.

Now we want to state the main result of this section. In order to charac-
terize the strict approximation g, of a function f we define a partition {/;}, of
I and consider on each subinterval I; the best approximations to f — g, out
of §,,(I;). For example, let I; =[x, ,x, ]|, I;,,=(x,,x,, ] Then S, (J,) has
no boundary conditions in x, while the ‘functions of S(I;; ) have a zero of
order m—1 inx,. This notation will be very important to the following
theorem.

THEOREM 3.10. Let the partition A = {x;}%}} be given, let I =[xy, x, , ]
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and S, (I, T), where T is a finite subset of I such that dim S({, T) = m + k.
Suppose that f is a function in C(T) and g, in S, (I, T). Then the following
properties are equivalent:

(a) The function g, is the strict approximation to f out of S,(I, T).

(b) There exists a partition of the interval x,=x, <x, < <X, <
X,, ., = Xi,, Such that the subintervals I, =1, . salisfy the conditions

vy KL

i) I=U 1, I,NIL, =@ foralli=1,..h

(ii) O is the unique best approximation from S,,(I;) to (f — g,) on T,.
where T;= TN, for all i = 1,.., h + | and there exists a critical point set R,
associated with I; relative to S, (1,).

(iii) Let y;=max,cr [(f — go)x).

Then for all i=1,.., h the following conditions will hold: If x, € I; then
VizVierand if x, & 1 then y, <y

Remark. The partition is not unique in general. We shall consider the
problems of Example 3.5.

In (a) there exist the partitions {[0, 1|, (1, 3]} and {|0, 2), [2, 3]}

In (b) there exist the partitions {[0, 2], (2,4]} and {[0, 1). |1, 4}}.

We want to illustrate Theorem 3.10 by another example: Let the following
partition of the interval /= [xg,x, | =[x, .x,] be given: [, =[x, .x, |
L=(x,,x, |, I,=(,,x.). I,=[x..x.]. Suppose that {(/;,y)}}
corresponds to the function g, and satisfies the properties of
Theorem 3.10(b).

Then g, is the best approximation to /" on TMI, out of S, (/)=
span{l,..,x" ' (x —x )" . (x —x,)7 "} for i=1 and i = 4. 0 is the best
approximation to f— g, on T/, out of §,(I,)=spani(x —x, )7 Lo
(x —x,, )5 '} and O is the best approximation to f — g, on 7M1, out of
S,(I;)=spani{M, ...,M, | where M, are B-splines of order m. Moreover.
it follows from (b) (iii) that y, >y, > y; <7, where 3, = [[(f — &o) [; Il

For the proof of Theorem 3.10 it is necessary to show some further
properties of critical point sets. We shall prove two lemmas and always
consider the Problem Al The other cases can be similarly handled.

LeMMA 3.11. Let Problem Al be given and let H be the set of all subin-
tervals associated with a critical point set of [ —s,. Let I, be of the form of
Lemma 3.6

¢
Iy= U L Xome1 SXp, <Xgp oo <X, <X KXy
i
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Then for each subinterval I, . there exists a partition 4;:x, =X

Pit+vo <
Xpiomy <000 < Xpyp, < Xpp0, = Xg, Such that for

~

I=1 T,=TNI, j=l..i

pitvj_1,pitu;?
the following conditions will hold:

(a) Ui IIJ—Ip”q,IjﬂIH] =g forj=1,.,i— L

(b) O is a best approximation from Sm(f) to f—s, on T“_,. and I: is
associated with a critical point set of f — s,.

Proof. Let 1, . be given. Suppose that 7, , and [, , are subintervals of

I,, ., which are associated with critical point sets satisfying x, < x,,
X,, <x,,and g, — v, <m.

We only consider the case Ipi»‘Ii.: [xpi,xqi], I, .=
uy» Xu,]- The other cases can be similarly shown.

It follows from Theorem 2.6 that there exist points {v;}7"2,

{TMN1,,,,} such that f—s, has alternating extremal points on {v;}7}”2
and

[x,,,x,,] and I, .=

[x

Vi€ (X_puisXio1)s i=p,+2.,m+v,— 1. (3.2)
Then we conclude from (3.2) that ¥ = {v,}[*2, < (x,,x, | and
V€ (X_pyis Xish i=m+v, + .., m+v,— 1

Hence it follows from Theorem 2.6 that 0 is a best approximation from
Su(l;) tof—s,on Ty, where I, = (x, ,x, | and T, =T N 1,. Moreover [, is
associated with the critical point set ¥ relative to S,,(Z,).
It follows from the definition of I, that there exist subintervals I,

[x ]] of 1, , associated with critical point sets, j= l,...,/, such that
Xy, < Xyjpr Xo, <Xy s My —V; <mand X, =Xy, Xy = X, We'see that a
repeated application of the above arguments yields a partition satisfying the
properties of the theorem on 7, , . Hence we obtain a partition for all subin-
tervals 7, .. This completes the proof.

LEmMMA 3.12.  Let Problem Al be given and let I, =1, , andl,=1, .,
where x, <x, <x,, x, €1, and x, &I, be two subintervals associated
with critical point sets of f — s, relative to S,(I,) and S,(1,), respectively.

Then there exists a subinterval [, =1 Py where

xp1<xpz<xrn’ Pr—q,<m
xpzelpz-lh lfp2>_m+1’ x Elpzlh if‘xlhel2

such that 1, is associated with a critical point set R, relative to S,,(1,).
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Proof. We only consider the case where p, > 1, ¢, <k and n=m+ k.
Hence I, =[x, ,x, | and I, =(x,,x,| The other cases can be similarly
shown. We conclude from Theorem 2.6 that there exist sets {u;}""% = T,
and {v;}70, < T,, T,=TNI, for i =1, 2, such that

H(f‘so)irlu :é(*l)i(ffsl)(ui)’ i=p +L..m+q &=l
1 —s0) irzH = U(‘l)i(f‘sl)(vi)» f=m+q,..m+q,, n=1
and

U € (X s Xk i=p, +2,.,m+gq,—1, 3.3)
l)iE(X,mH-,Xi,,)q ":m+ql+l~---~m+(bvl'

We define a subset Y, = {y;}{"",7% | in the following way

o Y S = 5 g) > O,
U, elsewhere
for all
i=p,+ L m+g, -1
and

yi=v;, i=m+q,...m+q,.

It follows that
(=) —s )y 0) <0, i=p, +lo,m+qg,—1 (3.4)

We have to distinguish the following cases:

(1) If Xpy g 1 K Opyg, then Ig=1[x, X, and Rg= v 410,

satisfy the conditions of the lemma.

(2) Let Umvg, < Xmog, 1 and let c={—s)up, ,) X
(f = $)(m.q,) > 0. Then it follows from (3.3) and x, <v,., <X, ;
that

PiEX X ) i=pi+2..m+g,—1

and we set
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(3) Let v,,4, <Xpiq,_1 and ¢ <O0. Then it follows from (3.3) and
Umyq, € (X4, 15%,,] that

y,-e(x_,,,“-,x,-_l), i=m+q,m+q,— 1,

‘ (3.5)
y,-e(x_,,,+,-,x,~), l=p1+17""m+q1'—1'
Let p, be the integer in p, < p, < g, such that
Vpab 12 Xp,s Vi< Xi_1» i=p,+2,..,m+q,— 1. (3.6)

Then we conclude from (3.5) and (3.6) that
Vi€ (X_piis Xii1) i=p,+2..,m+q,— 1
Set
To=[xp,, %5, Ro= (i}

R, is a reference relative to S, (I,) and I, is associated with this reference.

According to (3.4), f — s, alternates on R,. Therefore s, is a best approx-
imation from S,(I,) to f on T'MI,. Hence R, is a critical point set
associated with I,. This completes the proof.

Proof of Theorem 3.7. (a)- (b). First we shall assume that g, is the
strict approximation. According to Theorem 3.9 the strict approximation can
be constructed by Definition 3.8. We shall use the notations of this
definition. Set hj=Z{:1sj, j=1l,.,r, then h, = g, is the strict approx-
imation.

Let I, =1z = o I, ,, be associated with the critical point sets of
S —h,. It follows from Lemma 3.6 that q;,,, —p;,>m foralli=1,..,¢— L
We conclude from Definition 3.8 that (f—#,) ‘Tﬂlﬁl =(f—h,) |T“’ﬁ.‘

Lemma 3.11 implies that there exists a partition on [z satisfying the
properties of the theorem. Next we consider the subintervals (x,,x, )
i=1l,.,t—1,[x,,x,)and (x,,x,,]. We have Iz < I\Iy,, where H, is the
set of subintervals associated with critical point sets of f — h, relative to
S (N[ ). Moreover, (f — ho) lr g, = (f = ) I ~ug,- Using Lemma 3.11 we
obtain a partition of I . This construction is continued until 7 = I, . We
obtain a partition of 7/ satlsfymg properties (i) and (ii) of the theorem.
Let I,=1,_,, and I,,, =1, , . be two subintervals of this partition.
Assume that x, € /; and x, € 1, ;. Then it follows from the construction of
the strict approxnmatlon that I,e H and I, ;€ H satisfy 7, <#,.
Therefore ||(f — &,) |, |l > I/ — 4,) |,MH. The case x, & I ‘and x,€1;,, can

be similarly handled. This proves (iii).
(b)— (a). For the converse let a function g, in §,,(f, T) be given such
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that there exists a partition {(/;,y;)}7) of I satisfying the conditions of the
theorem.

First we define the set of subintervals C,= {l,;:y,=3,}, where ¢, =
max; ;. 41 Vi We shall show that I =1y . Let I, =1, |, be an element
of C,. Then we prove that I, < I, . We must distinguish the following cases:

(@) I,€K,. ie, [;=|x, ,x,]. Then it is obvious that [, € H,.
Hence [; < I7.

(B) I,€K,.ie,l;=(x, .x_]| Then it follows from property (b)(iii)
that there exist subintervals {'1 }f ,'u satisfying /, € C,. j={—u....i and
L €Kyl K, We conclude from Lemma 3.12 that there
exists an interval = [x, x0  eli,Od ay, where x S

Xy <Xy, and = v, < m such that I assoc1ated with a critical point
set of / — g, relative to S,,,(I). Then it follows from the construction of {5
that {/;_, I, 1 < Iy . A repeated application of these arguments shows

that {f;_, U .-+ UL}y . [, € K, can be similarly handled.

P—u
() LK, ie, l;=(x. ,x,) Then it follows from the assumption

(b)(iii) and the arguments in (B) that there exists a subinterval I'
[x,. X, ICH We apply Lemma 3.12 to 7'. /; and obtain a submterval
I’'= [ Xy s Xy )EK1 such that I? is associated w1th a critical point set of
f— g relatlve to S,(?), where x, < x, ,<x,, and n, —v; ; <m. Then it
follows from (f) that I* < I,. We conclude from N —vi., < m that 1'\U
;< Ig,. Therefore I < Iy . Moreover, we have |(f — gy)(x)| < 9, for all x €
TN (I\g,). Thus we obtain I, =15, Now we consider the approximation
problems corresponding to the subsets G; of Definition 3.8. Let 9, =
max; {y;: ¥; < 6;_,} for i > 2. Using the above arguments we are able to show
that /. = /g and 0 is a best approximation from S (I\l,, )to f— g, on
TN {I\,,_} fori=2,.,r. Hence g, is a function satisfying the properties of
Definition 3.8. Therefore, g, is the strict approximation.

A modification of Definition 3.8 yields a partition of the interval satisfying
the properties of Theorem 3.10.

DerINITION 3.13. Let 4= {x;}iy and [=|x,, x,,,) be given. Let
SI)y=span{M_,, ... M.}, where {M,;} is a local basis. Suppose that 7" is
a finite subset of /1.

Set G, =S, (I.T), I, =@ and let Z, be the set of integers {—m + ..., k}.

Then we define for j > 1 the followmg sequence of functions s;:

Let G be the set of best approximations to the function f-
(s, + +sj ) (e, fif j=1)on TN 1\]: 1} out of span{{M};., | and
let s; be a function in G Suppose that /; is a subinterval of 1\1 . which is
assocnated with a cr1t1cal point set of f — (s, + --- 4+ 5,). Then we define I=
I~, U1, and

Z,={i€Z, :{x:Mx)=0)NI =0}
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This construction is continued until Z, =g for some t. We denote by g(f)
the function s, + --- + 5,.

CoRrROLLARY 3.14. The function §(f) of Definition 3.13 is the strict
approximation and the subintervals I, are a partition satisfying the properties
of Theorem 3.10.

Proof. It follows from the construction of Definition 3.13 that the
partition {I;} satisfies the conditions of Theorem 3.10. Therefore g(/) is the
strict approximation.

4. APPROXIMATIONS ON AN INTERVAL

In this section we want to consider an approximation problem which is
defined on an interval, ie., T=[a,b]=[x,, % ] If we apply the
construction of Definition 3.13 to this case then we shall not obtain a
function which is uniquely determined in general. We shall see the difficulties
in the following example:

Let Problem AI of Section3 be given, let 7= |x_,,,,x,] and f be a
function in C(T). Therefore we consider the best approximations to f out of a
subspace spanned by B-splines. It is possible that there does not exist a
critical point set in [ = (x_u.15x,) Then a boundary point x_,,,, or x, is a
critical point set and the deviation of the best approximation is | f(x_,,, )| or
|f(x,) because s(x_, ., ,)=s(x,)=0 for all s& S, (I, T). In this case the
best approximations are uniquely determined only in one boundary point in
general. Therefore we cannot apply the construction of Definition 3.13. We
see that the critical point set is not contained in I.

The construction can only be applied to a subset of Cla, b].

Let 4= {x;}¢*y and T =[xy, X,,,] = [a,b] be given. Then S,(I,T)=
S ,£4).

The construction of Definition 3.13 is possible for a function f € C|a, b] if
[ satisfies the following conditions.

Let Gj be the set of best approximations as in Definition 3.13. We assume
that there exists a subinterval 7; of I\I:-_1 which is associated with a critical
point set of f — (s, + :+- +5;) for all j. We have seen in the above example
that this condition is not satisfied in general.

Then the construction of Definition 3.13 defines a unique function
§(f) € Sp(4).

We denote the set of functions fin C[a, b] satisfying the above conditions
by Cla, b].

THEOREM 4.1. Let a function f in Cla,b] and the subspace S,(d) be

640/41/4-3
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given. Then there exists a function g, in S,(A) such that the following
assertions are true:

(@) There exists a partition of the interval x,=x, <x. < - <X, <
X,, = Xx.1 Such that the subintervals I; =1, . satisfy:
i) I=UM 11,01, =@ foralli=1,.,h

(i1) O is the unique best approximation from S,(I;) to (f — g,) on

T;, where T,=|x,. ,x, | and there exists a critical point set R, < I; which is

-1 7Yy

associated with I, for all i = 1,...,h + 1.

(i) Let y;=max, . |[(f — g)x). Then for all i=1..h the
Jollowing conditions will hold: If x. € I, then 3, >y, and if x, €1, then
Vi< Vit

(b) The function g, is the strict approximation to [ on the subsel R =
U 'R,, where R, are the critical point sets of (a).

Proof. (a) It follows from the construction of Definition 3.13 that there
exists a function g, satisfying (i)~(iii).
(b) The function g,|, satisfies the conditions of Theorem 3.10.
Therefore g, is a strict approximation for the problem defined on R.

Strict approximations are not defined for continuous problems. Since the
function g, of Theorem 4.1 corresponding to a function f € Cla,b| is also a
strict approximation on a finite subset of |a, b| we shall call this function a
strict approximation for the continuous problem.
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