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The problem of approximating a given function by spline functions with fixed
knots is discussed. Strict approximations which are particular unique best
Chebyshev approximations are considered. The chief purpose is to develop a
characterization theorem for these strict approximations.

INTRODUCTION

In this paper we consider the problem of approximating a given function f
in C(T) by spline functions with fixed knots. One of the difficulties lies in the
fact that a best approximation is not always unique. Therefore it is natural to
consider conditions which single out one of the best approximations. Rice
[3] defines a unique "strict approximation" for functions defined on a finite
set. But discrete approximation problems are closely related to problems on
an interval. Recently strict approximations were extensively studied. It is
possible to determine these approximations by methods known as ascent
methods.

The chief purpose of this paper is to develop characterization theorems for
strict approximations in subspaces of spline functions.

Rice [3] and Schumaker [4] established characterization theorems for best
approximations to functions f defined on an interval.

In Section 2 we shall extend these results to the problem where T is a
compact subset of IR and the subspaces of spline functions satisfy certain
boundary conditions.

These results will be used in Section 3 in order to characterize strict
approximations. First we single out a uniquely determined function in the set
of best approximations by an inductive definition. Then we shall show that
this best approximation is the strict approximation in the sense of Rice.
Using our definition it is possible to establish a characterization theorem for
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strict approximations (Theorem 3.10). Moreover our definition can be
applied to problems defined on an interval.

In Section 4 we shall consider such approximation problems and shall
show the difficulties which arise from these problems. Then we define for a
great class of continuous functions uniquely determined best approximations
which can also be considered as strict approximations.

The characterization theorem is very useful for developing an algorithm
which determines the strict approximation. In a further paper we shall
establish such an algorithm.

I. PRELIMINARIES

Let T be a compact subset of let eel') be the normed linear space of all
continuous real-valued functions defined on T and let the space C(T) be
normed by

!I/II = max i/(x)l·
XET

Suppose / is a function in C(T) and G = span 1g I'.. ·• gn} an n-dimensional
subspace of e(T). Then we consider the linear Chebyshev approximation
problem: For every function / in C(T) we define the set of best approx
imations to / out of G by

We shall use the notations

g.It,))

gn(tll)

where (td~ _I is a subset of T, we denote by E(f) the set of extremal points
of the function / (on T)

E(f) = {x E T: 1/(x)1 = IIPI f

and we call points t I < < til in l' alternating extremal points of / if
1](-I)i/(ti) = IlfII, i = I, , h. 1] E {-I, l~.

The following theorem is well-known (see Watson [7, p. 50]).



STRICT APPROXIMATIONS 311

THEOREM 1.1. A function go is an element of PG(f) if and only if there
exists E c E(f - go) containing h ~ n + 1 points t1 , ••• , th and a nontrivial
vector AE IR h such that

FA (t 1

gl

Ai' Oi~O,

where 0i = sign((f - gO)(ti»' i = 1,... , h.

th
) = 0,

gn

i = 1,..., h

In later sections we shall also consider approximation problems on a
subset U of T. A function go in G is called a best approximation to a
function f on U (out of G) iff

11(f - go) lull = inf {max If(x) - g(x)I}·
KEG XEU

A subset U = {u 1'00" un + I} of T is called a reference iff

has rank n.
Suppose that the subset U = {u l ,... , un + I} in T is a reference. Then there

exists a unique solution (up to a scalar) of the linear system ATAu = 0, where
AT = (A!"", An+ I) is a nontrivial vector in IR n + I' We obtain

cEIR. (1.1)

(1.2)

Let go be a function of G satisfying

f(uJ - go(u;) = 110; 11(f - go) lull,
0; = A/IA;I for all Ai 0;'= °
0i E {-I, I} elsewhere

where A; is defined in (1.1). Then it follows from Theorem 1.1 that go is a
best approximation to f on the reference U. We call y = IIU - go) lull the
reference deviation.

A subspace G satisfies the Haar condition if g E G, g(x) = °at n distinct
points of T implies g == 0. In this case the best approximation is always
unique.

640/41/42
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2. CHARACTERIZATION THEOREMS

In this section we shall study approximation problems for subspaces of
polynomial spline functions. Let LI denote the partition a = X o < X I < ... <
xk<xk+l=b on the interval [a,b]. The subspace Sm(.d) of polynomial
spline functions of degree m (m >2) with simple fixed knots at LI is defined
by

where nm _ I denotes all polynomials of degree (m ~ 1.
Let be T = [a, b I and G = S m(L1) in the approximation problem of

Section 1. Rice [3] and Schumaker [4] established characterization theorems
for the best approximations of this problem.

In our investigations it will be necessary to study approximation problems
defined an a compact subset T of [xo' x k + I]' Moreover, we consider
subspaces of S m(L1) satisfying boundary conditions. Therefore we shall
extend the results of Rice and Schumaker to these problems. The following
notation is used throughout the paper: K 1 is the class of closed subintervals,
K 2 and K 3 are the classes of half-open subintervals of the form (u. L'I and
lu, v), respectively; K 4 is the class of open subintervals. We shall denote by
I p •q a subinterval with boundary points xp and xq where x p and x q are knots
of the subspace of spline functions. Then Ip.q = [xp' x qI if I p.q E K l' Ip.q =
(xp,x'll if Ip.qEK 2 , Ip.q=\xp,Xq) if Ip.qEK] and Ip.q=(xp,Xq) if

Ip •q E K 4 •

Using these notations we shall define the following subspaces: Let T be a
compact subset of [xo, X kT I] and let I be a subinterval such that (xo' x k . J) C

Ie IXO,xkt II. Then

Sm(l, T) = {s IT: s E Sm(L1).

if I E K 2 then sU)(xo) = 0, i = 0, m ~ 2.

if IE K, then s U\x k + 1) = o. i = 0 , m ~ 2.

if IE K 4 then s(i)(xo) = SUI(Xk t I) = 0, i = 0..... m - 2 i.

If T = [xo, x H II then we denote Sm(l, T) by Sm(l)· Notice that Sm(!' T)
satisfies boundary conditions in X o or X k _ 1 if the interval I is not closed. If
IE K] then Sm(l) = Sm(L1). We see that the interval I also determines the
boundary conditions of the subspace in consideration.

These notations will be very useful in Section 3.

Remark 2.1. Let 3 denote the partition x m + 1 < '" < X o < ...
x HI < ... <x/1' where n=m +k. Let l=(x_m+l,x ll ), 1= [XO.x k + J [ and
jE C(T), where T is a closed subset of I. Then Sm(l, T) = Sm(I. T). This is
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also true if 1= (X- m+l'Xk +l ] or 1= [xo,xn), Therefore it is sufficient to
establish characterization theorems for best approximations only for the case
G = S mel, T). The other cases will immediately follow from these results.

A local basis of Smel) will be very useful. Let Mi be the mth order B
spline associated with the knots Xi'"'' Xi+m (see [5, p. 118]). Then

Sm(l) = span{M-m+1 ,... , Mn-mf·

If we consider Sm(l, T) then we also denote M i IT by Mi'
Let T be a closed subset of 1 and U = lUi f7= 1 c T. Then

has rank n if and only if

A ( u 1

M_ m+ 1

... U )... M:

i = 1,... , n (2.1 )

(see [5]). Therefore the dimension of Smel, T) is n, iff there exists a subset
U c T satisfying (2.1).

Now we want to prove the following lemma.

LEMMA 2.2. Let the partition J={x;}7~-m+1' m;;::'2 and n;;::'I, be
given, let 1= (x- m+l'Xn) and let T= {u;}7~/ be a subset of I where
x_ m+1< u1< ... < un+1<xn·

(a) Then there exist positive integers p and q, 1 <: P <: q <: n, and a
subset {v;}r~; c Tn (x_ m+p, x q ) such that

i = P + 1,... , q. (2.2)

Ifp> 1 then vp;;::'xp_1and ifq <n then vq +1<:x- m+q +1 •

(b) Let the dimension of Smel, T) be n. Then there exist positive
integers p and q, 1 <: P <: q <: n, such that {u;}r~; c (x_ m+p, xq ) and

uiE (x_m+i,Xi_ I ),

ui E (x_ m + i , x;),

i = P + 1,... , q,

i = 1,... , p,

i= q,... , n.

(2.3 )

IfP > 1 then up;;::' xp_ 1 and if q <n then uq +1 <: x_ m+q +I'

Proof We shall only prove (b). The proof proceeds by induction on k.
The case n = 1 can be easily shown. Set p = q = 1 then (2.3) is satisfied. We
assume that the result has been established for n - 1. Now we show the
assertion for n. It is necessary to distinguish the following cases:
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(i) Suppose that ui E (x -m+j, Xi-I)' i = 2,.... n. Then p = I and q = n
are the desired positive integers.

(ii) Let Uh+l~x_m+h+1 for some h where I ~h~n-l. Then we
apply the induction hypothesis to the subset 1U j , •••• U h T I i and the subinterval
(x_m+I,Xh). Hence there existp and q, I~p~q~h, such that jud~'i

satisfies (2.3) on (x_m+I,Xh). If q=h then uh+1~x md-l and if q < h
then it follows from the induction hypothesis that uq " j ~ X m, '/ ' I'

Moreover, we conclude from (2.1) that uitjE(x-mii,xJ i=q,.... II.

Therefore the integers p and q also satisfy (2.3) for T on I
(iii) Let uh >- X h _ 1 for some h where 2 ~ h ~ n. This case an be

similarly proven.

The assertion (a) can be similarly shown.
According to this lemma we shall define subsets which are associated with

subintervals. This notation will be very important for our approximation
problems.

Let J=lxd7~-m+' be given, let J=(x mcl,xn) and R=judfl;'
I ~ P ~ q ~ n, be a subset of 1. We call the subset R associated with a subill
terval JR' iff R c JR where

I(X_m.1,Xn)

Ixp_l,xn )

(x_ m. l' X m + q t I I
if

p= I,q= II,

p> l.q=lI,

p=l.q<lI.

p> I, q < n,

(2.4 )

First we obtain the following result:

i = P + I,.... q.

THEOREM 2.3. Let the partition J = {xd;'_ m + I be given. let J =
(x _ rn + I • Xn) and let R = {u if j+; be a subset of J which is associated with a
subinterval JR' Then the following assertions will hold:

(a) The subspace Sm(l, R) satisfies the Haar condition.

(b) There exists a reference R , = lud;'.:'"i in J satisfying R c R 1 and

if uiE R,
elsewhere

for all i = 1,.... n + I where

... u )n· 1

M
n

__
m

•
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(c) Let R I be a reference. Then there exist unique integers p and q
satisfying (2.3).

Proof (a) We see that Sm(l,R)=Sm(JR,R). It follows from (2.1) and
(2.4) that

det A ( up
M_ m+p

for all i = p,..., q + 1. Hence S m(l, R) satisfies the Haar condition.

(b) We define R I such that ui E (x_ m+ i , Xi)' i = 1,... , P - 1, and
ui+I E (x_ m+i' xJ, i = q,... , n. It is obvious that R I = {ud7:/ is a reference.

Let Vi = {Up... , un+d\{ui} = {vd7=1' Suppose that ui E R. Then it follows
from (2.1) and (2.4) that det(A i) *- 0. Suppose that ui rJ:. R. Let i < P then we
conclude from (2.4) that (x_ m +l'Xp _ l ) contains only the points up... ,up _ 1 '

Hence {up..., Up_I }\{ud = {v p ... , vp_2 } and vp_ 1~ Xp-I' The conditions
Vi E (x- m + i , Xi)' i = 1,... , P - 1, cannot be satisfied and the rank of Ai is less
than n. Similarly the case i > q + 1 can be proven.

(c) Let (Pl,ql) and (P2,q2) be integers satisfying (2.3). Then it
follows from the above arguments that det(A J *- 0, iff i = PI"'" q I + 1 and
det(A J *- 0, iff i = P2 ,..., q2 + 1. This contradiction completes the proof.

Now we are able to give characterization theorems for our approximation
problem.

THEOREM 2.4. Let the partition J = {xd7=-m+l be given and let 1=
(x -m + I' x n). Let T be a compact subset of I such that dimeSm(l, T)) = n.

(a) Then So in Sm(l, T) is a best approximation to a function fin qT)
out of Sm(l, T) if and only if there exists a subset R = lUi};:; of T which is
associated with a subinterval JR of the form (2.4) such that

i = p,..., q + 1, 11 E {-I, l}. (2.5)

(b) If s I is a best approximation where so*- S I then

for all x E JR'

Proof (a) Let So be a best approximation. It is well-known that every
s E S m(l, T) has at most n - 1 sign changes, i.e., there do not exist n + 1
points t I < t z < ... < tn+I in T with s(ti) s(tH I) < 0, i = 1,... , n.

Then it follows from a theorem in ([2, p. 23]) that there exists a
s I E PG(f), G = S m(l, T), such that f - s I has at least n + 1 alternating
extremal points. Hence we conclude from Lemma 2.2(a) that there exists a
subset R which is associated with a subinterval JR satisfying the condition
(2.5).
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For the converse we assume that So is a function satisfying (2.5). Then it
follows from Theorem 2.3 that there exists a reference R, = lUi} 7' i which
contains R. We conclude from Section I that there exists a unique vector ;, =
(1l" ... ,lln +,f (up to a scalar) satisfying

It is well known that

detA ( Mil
--m-+ I

1/1 I ?O
/v!,,_nr

for all x _m+ 1 < t 1 < t 2 < ... < In < X n' Thus we obtain from (1.1) that ;. i .

Il i+ I ~ 0, i = I,..., n. It follows from Theorem 2.3 (b) that Il i '* 0 iff i E
{p, ... ,q + I}.
_Therefore IJll i sign((f - so)(uJ)? 0 for i = 1,. .. , n + I, IJ E 1-1, I (. Hence

IJA is a vector satisfying the conditions of Theorem 1.1 and So is a best
approximation to I on R I' It is obvious that So is also a best approximation
on T. This completes the proof of (a).

(b) It follows from (a) that

max I/(x) - s I (x)1 ~ max I/(x) - so(x)l·
XER XER

We conclude from Theorem 2.3(a) that S mel, R) satisfies the Haar condition.
Hence sO(X)=SI(X) for all xER and it follows from (2.1) and (2.4) that
(SO-SI)(X)=O for xEJR.

It will be necessary to establish characterization theorems for all kinds of
boundary conditions. Therefore we have to define subsets associated with
subintervals of the form (2.4) for all classes of subspaces.

DEFINITION 2.5. Let the partition Ll = {xd7"[i be given and let! be an
interval such that (XO'Xk+I)C!C [xo,xkTl ]. We call a subset R = judi+;
associated with a subinterval J R relative to S m(l), iff Rand J R' R C JR'

satisfy the following conditions:

(a) Let !EKI, i.e., Sm(l)=span l l ..... x '" I. (X-'\I)':' I.....
(X-Xk)~~lf: JR= [xp-toX-m+HIJ and uiE (X,"+i'.\i-I)' i= p+ I,.... q.

(b) Let !EK2, i.e., Sm(J)=span{(x-xo)~-'"",(X-Xk)'~ If: JR =
(xo'xq] if p=I, JR=[Xp+m_2,Xq] if p> I and uiE(xi_l,xi+m_2)' i=
p + I, ... , q.
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(c) Let IEK3 , i.e., Sm(/)=span{(xt-x)'~-t,... , (Xk+I-X)~-I}:

JR=[XP _l'Xk+t) ifq=k+l,JR=[xp_l'X_ m+Q+\] ifq<k+l and uiE
(X- m+i, Xi-I)' i = p + 1,..., q.

(d) Let IEK4 and k~m-l, i.e., Sm(/)=span{Mo,...,Mk _ m+ I }:

JR= (xo, xk+t) if p = 1, q = k - m + 2; JR= [xp+m- z, x k+I) if P > 1, q = k
m+2;JR=(xO'xq ] ifp=l,q<k-m+2;JR=[xp+m_z,Xq] ifp> l,q<
k - m + 2 and ui E (Xi_I' Xj +m-- z), i = P + 1,... , q.

Then we obtain the following result:

THEOREM 2.6. Let the partition Ll = {xd7~d be given, let I be a subin
terval such that (xo, x k+I) C I c [xo, xk+ I] and let T be a compact subset of
I satisfying dim(Sm(/, T)) = dim(Sm(/)).

(a) Then a function So is a best approximation to a function f in C(T)
out of Sm(/, T) if and only if there exists a subset R = {udr,;;; which is
associated with a subinterval JR such that

i = p,... , q + 1, '7 E {-I, I}. (2.6)

(b) Ifst is a best approximation where SO*SI then so(X) = SI(X) for
all x E JR'

Proof Theorem 2.4 and Remark 2.1.
For Sm(/, T) = SmeLl) the statements of Theorem 2.6 are due to Rice [3,

pp. 151,152] and Schumaker [4].

3. CHARACTERIZATION THEOREMS FOR STRICT ApPROXIMATIONS

The best approximations of Section 2 are not uniquely determined in
general. Therefore it is natural to consider conditions which single out one of
the best approximations. Descloux [1] and Rice [3] considered the so-called
strict approximation. First we shall state the definition of these best approx
imations (see [3 D. Let f be a function of C(T), where T is a finite subset of
IR and let G be an n-dimensional subspace of C(T). Suppose go is a best
approximation from G to f on T. A subset S of the extremal points off - go
is said to be a critical point set if go is a best approximation to f on S but is
not a best approximation to f on any proper subset of S.

It follows from Theorem 1.1 that a critical point set contains at most
n + 1 points.

Now we are able to define strict approximations.

DEFINITION 3.1. Let a finite subset T of IR be given. Let f be a function
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in C(T) and G be an n-dimensional subspace G of C(T). Set Go = G and
To = 0. Then we define for j ~ I

Gj = {gE Gj _ 1 : max IU - g)(x)1 ~ max IU - g)(x)1
x x

for all x E 7\Ti - 1 and all g E Gj 1 f.

Denote by Hj the set of critical point sets with respect to a function gj E Gj

and denote by Vj the set of points which are contained in a critical point set
of H j • Set Tj = Tj _ 1 U Vj • The construction is continued until T = T{ for
some I. The members of G{ are said to be strict approximations to f on T.

The strict approximation is unique (see 13, p. 2431).
Next we shall determine the critical point sets of our approximation

problems in Section 2.

THEOREM 3.2. Let the assumptions of Theorem 2.6 be given and let So

be a best approximation from Smel, T) to a function f in C(T). Then the
following conditions are equivalent:

(a) The subset ReT is a critical point set.

(b) The subset ReT is associated with a subinterval J I< re/alive to
S m(l) and f - So has alternating extremal points on R.

Proof (a )--> (b). It follows from the definition of critical point sets that
So is a best approximation to the function f on R. Hence we conclude from
Theorem 2.6 that there exists a subset RIc R associated with a subinterval
such that f - So has alternating extremai points on R l' If R 1 is a proper
subset of R then So is also a best approximation on R l' This contradiction
completes the proof.

(b) -> (a). We conclude from Theorem 2.6 that SO IR is a best approx
imation from Sm(JR,R) toflR' Let t be a point of Rand R1=R\1t}=
{v;}j~p. Then it follows from the assumptions on R that Vi E (x -m j i ' Xi)' i =
p,... , q, and from (2.1) that f II<, E S m(JR ,R 1)' Hence So is not a best approx
imation to f on R 2' This proves the theorem.

Remark 3.3. It follows from Theorem 2.3(c) that a best approximation
on a reference has a unique critical point set.

DEFINITION 3.4. Let the assumptions of Theorem 2.6 be given and let So

be a best approximation from S mel, T) to f in C(T). Suppose R is a critical
point set. Then there exists a subinterval JR which is associated with R. We
call this subinterval JR associated with the critical point set R. Let Sl be a
best approximation to f on a reference U c T and let J u be the subinterval
associated with the unique critical point set of U. Then we call the subin
terval J u to be associated with the reference.
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It follows immediately from Theorem 2.6 and Theorem 3.2 that SO IJ
R

=
sllJ

R
if So and SI are two best approximations and JR is a subinterval

associated with a critical point set relative to So' Hence the best approx
imations are uniquely determined on subintervals which are associated with
critical point sets. Using this property we shall see that it is possible to
define strict approximations otherwise than in Definition 3.1.

First we shall give the following notation:
Let the assumptions of Theorem 2.6 be given and let So be a best approx

imation from S m(I, T) to 1 in qT). Suppose that H is the set of all subin
tervals I pi •q ; associated with a critical point set of1 - So' Then we denote by
III the following set:

III = {x: there exists a subinterval I pi •qi E H such that x E I pi •qi }

U {x: there exist subintervals Ipi,qi' Ip;.qj c H such that

0< Pj-qi::;;m-1 andxE (xqi,xP)}.

We want to give some examples of critical point sets,

EXAMPLE 3.5. (a) Let the subspace G = span{ 1, x, (x - 1) +' (x - 2) +}
be defined on the interval 1= [0,3] and let the subset T = {I/3, 1/2, 2/3,
3/2, 7/3, 5/2, 8/3} be given. Suppose that 1 is a function in qT) satis
fying 1(1/3) =/(2/3) =f(5/2) = 1, 1(1/2)=f(7/3)=f(8/3)=-I and
1(3/2) = O. It is obvious that a is the unique best approximation. The subsets
R 1= {I/3, I/2,2/3} and R 2 = {7/3, 5/2, 8/3} are critical point sets
associated with the subintervals II = [0, 1] and 12 = [2,31, respectively. The
interval I is not associated with a critical point set. On the other hand, III is
the interval [0,3].

(b) Suppose that the subintervals I p q and I p q satisfy x p < xp ::;;
t, 1 2.2 I 2

xq , < x q , and Ip,.q" I p2 •q , are subintervals associated with critical point sets.
We shall show by an example that the subinterval Ip"qj U Jp2 ,q2 is not
associated with a critical point set in general. Let the subspace G =

span{ 1, x, (x - 1)+, (x - 2)+, (x - 3)+} be defined on the interval I = [0,4]
and let the subset T= {I/3, 2/3,4/3,5/3,5/2,10/3, II/3} of J be given.
Suppose f is a function on T such that

f(1/3) = f(4/3) = f(5/2) = 1(11/3) = 1,

f(2/3) = f(5/3) = f(1O/3) =-1.

It follows from Theorem 2,6 that a is a best approximation from G to1 on T.
The subintervals II = [0,2] and 12 = [1,4] are subintervals associated with
critical point sets. But it can be seen that J is not an interval associated with
a critical point set.
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For our investigations it is necessary to show some properties of critical
point sets. We shall always consider the following approximation problem:

PROBLEM AI. Let the partition J = jXd7 m+ I be given, let r=
(x_ m +" x n ) and T be a compact subset of rsuch that dim(Sm(i T)) = n. We
denote by So a best approximation to f in C(T) out of G = S m(i T).

According to Remark 2.1 the other cases follow immediately from this
approximation problem.

LEMMA 3.6. Let Problem AI be given and let H be the set of all subin
tervals associated with a critical point set off - so' Then If{ has the form

,
If{ = U I pi .qi ,

i I

and satisfies the conditions

(a) PI = -m + I or I ~ PI' q, = nor ql ~ n - m

(3.1 )

if PI = -m + I, ql ~ n - m.

if P, ~ I, ql = n,

if PI = -m + I, q, = n,

I po q = [xpo,xq Ie Ix"xn _ m [ elsewhere.
/. I I I

(b) Pi~l-qi~mforalli=I,... ,t-1.

Proof (a) Theorem 2.4 and Theorem 3.2.

(b) This condition follows from the definition of If{'

In the next lemma we shall state an important property of the subset III'

LEMMA 3.7. The best approximations are uniquely determined on the
subset I H •

Proof If lois a subinterval associated with a critical point set then it
follows from Theorem 2.6(b) that the best approximations are uniquely
determined on 10 , Now let I P"qi and I pi I I .qi 0' be subintervals satisfying 0 <
Pi+ 1- qi ~ m - I then a spline function s on (xqi ' x pi 'I) is uniquely deter-
mined by s I, and s I, .' This completes the proof.

Pi,qj Pi+l·qJ~1. ••

This lemma enables us to gIve another mductlve definition of strict
approximations.
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DEFINITION 3.8. Let the partition L1 = {xd7;+d be given, let! = [xo, x k +,]
and Sm(I) = span{M-m+ p"" Md, where {Md is the local basis defined in
Section 2. Suppose that T is a finite subset of I.

Set Go = Sm(I, T), H o= 0 and let 2 0 be the set of integers {-m + 1,... , k}.
Then we define for j ~ 1 the following sequence of functions Sj:

Let Gj be the set of best approximations to the function f
(s, + ... + sL:c') on Tn {I\IH).,J.} out of span{{MdiEzj_t} and let si be a
function in Gj • We denote by H j the set of all subintervals in I\IHj_, which
are associated with a critical point set off - (s, + ... + sJ. Then we define
H· = H· ,U Ii. andJ J- J

The construction is continued until 2 r = 0 for some r. Then we denote by
g(f) the function s, + ... + Sr'

We shall see that this inductive definition determines the strict approx
imation.

THEOREM 3.9. Let the partition L1 = {x;}7;+d be given, let I = [xo, x k +,1
and S m(I, T), where T is a finite subset ofI. Then the function g(f) defined
in Definition 3.8 is the strict approximation to f out of Sm(I, T).

Proof We shall use the notations of Definition 3.1 and Definition 3.8.
Let G, ,..., G/ and G, ,..., Gr be the sets of best approximations in these

definitions. It follows immediately that G, = G,. Lemma 3.7 implies that the
set of best approximations is uniquely determined on the subinterval I H"

Therefore we restrict ourselves in the next approximation problem in
Definition 3.8 to the subset Tn {I\IHJ In Definition 3.1 the next approx
imation problem is defined on 1\V" where V, is the set of points which are
contained in a critical point set of H,. It can be seen that there exists an
index v2 , v2 > 1, such that G

V2
= {Sl + s: s E G2 1. Using these arguments we

can show that there exists integers vi such that Gv. = {s, + ... + s j _ I + s:
s E Gj }, i = 1,... , r. The set Gr contains exactly one fu~ction. Therefore Gv, =
G/ = {g(f)}. This completes the proof.

Now we want to state the main result of this section. In order to charac
terize the strict approximation go of a functionfwe define a partition {Idi of
I and consider on each subinterval Ii the best approximations to f - go out
of S m(Ij). For example, let I j = [xv , xv], I i +, = (xv' xv]· Then S m(Ii ) has

i-I l I 1+1

no boundary conditions in XVi while the functions of Sm(Ij+ ,) have a zero of
order m - 1 in xVI' This notation will be very important to the following
theorem.

THEOREM 3.10. Let the partition L1 = {xd7;+i be given, let 1 = [xo, X k +I]
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and S m(I, T), where T is a finite subset of I such that dim S(l, T) = m +- J.:..

Suppose that f is a function in qT) and go in Sm(l, T). Then the following
properties are equivalent:

(a) Thefunction go is the strict approximation tofoUI ofSm(l. T).

(b) There exists a partition of the interval X o= x"o < x,'\ < ... < x,,, <
X Vh ,I = x k +1 such that the subintervals I; = I", I .P, satisfy the conditions

(i) I=U7:/I;,I;nI;+1=0foralli=I .... ,h.

(ii) °is the unique best approximation from Sm(li) to U - go) on Ti.
where T; = Tn Ii for all i = 1,... , h+-I and there exists a critical point set R i

associated with I j relative to S m(lJ

(iii) Let Yi = maxXET, IU - go)(x)l·

Then for all i = 1,... , h the following conditions will hold: If x" E Ii then

Ii:) Y;t 1 and if x ", tf I; then Yj ~ 1;+ I' '

Remark. The partition is not unique in general. We shall consider the
problems of Example 3.5.

In (a) there exist the partitions 1[0, 1 j, (1. 31 i and 110,2), [2,3] f·
In (b) there exist the partitions {[ 0,21, (2, 41 f and {[ 0. 1). [1. 41 f.
We want to illustrate Theorem 3.10 by another example: Let the following

partition of the interval 1= IXo,xkT11 = IX"\I'x",] be given: II = jx,",x,J
12 =(xv" x v ,], 13=(xv2 'x,). I 4 =[x",.x"J Suppose that W;,Y;)f: I

corresponds to the function go and satisfies the properties of
Theorem 3.IO(b).

Then go is the best approximation to / on Tn/; out of Sm(l)=
spanp,... , x m- I

, (x - x t ),:'- ', ... , (x - X k ): 1 r for i = I and i = 4. 0 is the best
approximation to f - go on TnI 2 out of Sm(l2) = spanj(x -X,.,)'~ I .....

(x - X
V2

- I): - 1f and 0 is the best approximation to / - goon Tn I, out of
Sm(I3) = span{MV2 '"'' M"3-- mf, where M; are B-splines of order m. Moreover.
it follows from (b) (iii) that YI:) Y2:) Y3 ~ Y4' where}'; = IIU - go) IInI,ll·

For the proof of Theorem 3.10 it is necessary to show some further
properties of critical point sets. We shall prove two lemmas and always
consider the Problem AI. The other cases can be similarly handled.

LEMMA 3.11. Let Problem AI be given and let H be the set 0/ all subin
tervals associated with a critical point set off - so' Let III be 0/ the form of
Lemma 3.6

t

III = U Ip"q"
; I
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Then for each subinterval Jpj,qj there exists a partition J;:xPj =xpj+vo <
xPi+VI < ... <XPj+Vj_1 <XPi +Vi = x qi such that for

j = 1,..., i

. t { }m+v,pom s Vi ;=Ii'+ Ie
. t {}m+v,pom s on v; i~Ii'+ I

the following conditions will hold:

(a) Uj=I~=Jp;,qj,~n~+1=0forj=1,...,i-1.

(b) a is a best approximation from Smel) to f - So on Tj and ~ is
associated with a critical point set off - so'

Proof Let Jpj,qj be given. Suppose that Jlil,vl and JIi"v, are subintervals of
Jpi,qj which are associated with critical point sets satisfying XiiI < Xli"
XVI <xv, and f.J2 - VI < m.

We only consider the case Jp. q. = [xp., xq.], J" " = [x" , X ] and J =
I' I I I ,...1 .... 1 ,...1 vI #2. v2

[Xli" Xv,]· The other cases can be similarly shown.
It follows from Theorem 2.6 that there exist

{TnIIi"v,} such thatf-so has alternating extremal
and

i = f.J2 + 2,..., m + V2 - 1. (3.2)

i = m + VI + 1,... , m + v2 - 1.

Hence it follows from Theorem 2.6 that a is a best approximation from
Sm(I2) tof - So on T 2 , where 12 = (XVI' Xv,] and T 2 = TnI2 • Moreover J2 is
associated with the critical point set V relative to S m(J2)'

It follows from the definition of I H that there exist subintervals J". v. =
"'Jl J

[x"., xv.] of Ip. q' associated with critical point sets, j = 1,... , I, such that
,.. J J I' I

Xlij < Xlij+I' XVj <XVj + I' f.Jj+ 1- Vj < m and XiiI = xPi ' XVj = Xqj . We see that a
repeated application of the above arguments yields a partition satisfying the
properties of the theorem on Jp;,qj' Hence we obtain a partition for all subin
tervals Jpj .qj ' This completes the proof.

LEMMA 3.12. Let Problem AI be given and let I I = Ipl ,ql and 12 = Jql ,q,'
where xPI < xql < xq" x ql E II and x ql rI:. J 2 be two subintervals associated
with critical point sets off - So relative to Sm(Il) and Sm(J2 ), respectively.
Then there exists a subinterval 10 = Ip"q, where

P2 -ql < m

xq, E Ip,.q, if xq, E 12

such that 10 is associated with a critical point set R o relative to Sm(Io)'
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Proof We only consider the case where PI ;> I, q2 <k and n = m + k.
Hence II = [xPI'xql ] and 12= (xql,Xq,]. The other cases can be similarly
shown. We conclude from Theorem 2.6 that there exist sets ludr+p;~ 1 c T1

and judr"+mqiqt c T2, T j = Tn I j for i = 1, 2, such that

II(J - so) Id = ~(-l)j(J - s,)(u j ),

II(J - so) IT,ll = 1](-1 )i(J - sl)(v j ),

and

i=PI+1, ,m+ql' (=1

i=m+qj, ,m+q2' ~12=1

i=PI+ 2,... ,m+qj-l,

i = m + q, + 1,... , m + q2 - 1.
(3.3 )

We define a subset Y, = jYdr.4p;~ j in the following way

if (J-S,)(Um+q)(J-SI)(U rn + q) > 0,
elsewhere

for all

i= PI + I,...,m +ql- I

and

It follows that

Yi == vj ~ i = m + q, ,... , m + q 2 •

i = PI + 1,..., m + q2 - 1. (3.4)

We have to distinguish the following cases:

(I) If /' th I [ j d R -- J,' (Ill "/'Xm+qt -, ""v lIl +qt en 0= x m+ q, I'Xq, an a-IV!I! m,,/,
satisfy the conditions of the lemma.

(2) Let UmTqt<xm-cqt-j and let c:=(!-SI)(Um'II')X
(J-SI)(Vm+q»O. Then it follows from (3.3) and Xqt<vm.q,<xmlq, I

that

i = PI + 2, ... , m + q2 - I

and we set

and
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(3) Let Vm+Ql <Xm+QI-I and c < O. Then it follows from (3.3) and
um+q1 E (xq1-pXqJ that

Yi E (X_ m+ i , Xi_I)'

Y; E (X_ m + i , xJ,
i=m+ql,..·,m+qz-l,

i = PI + 1,..., m + q I - 1.
(3.5)

Let Pz be the integer in PI ~ pz ~ q\ such that

i = Pz + 2,... , m +ql - 1. (3.6)

Then we conclude from (3.5) and (3.6) that

i = pz + 2,... , m + qz - 1.

Set

R 0 is a reference relative to S m(I0) and lois associated with this reference.
According to (3.4),f-so alternates on R o' Therefore So is a best approx

imation from Sm(I0) to f on T Ii10 , Hence R 0 is a critical point set
associated with 10 , This completes the proof.

Proof of Theorem 3.7. (a) ~ (b). First we shall assume that go is the
strict approximation. According to Theorem 3.9 the strict approximation can
be constructed by Definition 3.8. We shall use the notations of this
definition. Set hj = 'L.{= I Sj' j = 1,... , r, then h r = go is the strict approx
imation.

Let IHl=Illl=U~=IIpi.qi be associated with the critical point sets of
f - hi' It follows from Lemma 3.6 that q;+ I - Pi ~ m for all i = 1,..., t - 1.
We conclude from Definition 3.8 that (f - hi) ITnI- = (f - hr ) luv- .

HI HI

Lemma 3.11 implies that there exists a partition on hi, satisfying the
properties of the theorem. Next we consider the subintervals (xqi , x

Pi
+),

i= 1,... , t-1, [xo,xp) and (xq"Xk+I]. We have Ill,eI\!ll" where liz is the
set of subintervals associated with critical point sets of f - h z relative to
Sm(l\IH)' Moreover, (f - hz) ITrv- = (f - hr) ITrv- . Using Lemma 3.11 we
obtain ~ partition of Ill,. This c;Astruction is co~'tinued until 1= Illr • We
obtain a partition of I satisfying properties (i) and (ii) of the theorem.

Let I;=Ivi-l,vi and Ii+l=Iviovi+, be two subintervals of this partition.
Assume that xv. E I; and Xv. E I i+I' Then it follows from the construction of
the strict app~oximation that liE liT/I and Ii+1EliT/' satisfy YJI~YJZ'
Therefore 11(f - hr) IIil1 ~ 11(f - hr) IIi+,II· The case XVi E Ii and XVi E I i+I can
be similarly handled. This proves (iii).

(b)~ (a). For the converse let a function go in Sm(I, T) be given such
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that there exists a partition {(Ii' YJ}~:/ of 1 satisfying the conditions of the
theorem.

First we define the set of subintervals CI={I;:y;=ol}' where 01 =
maxi~I"".h+1 Yi' We shall show that Ic , = IIl,. Let I; = II; ,.1,; be an element
of C I' Then we prove that Ii c 1Il,' We must distinguish the following cases:

(a) liEKI' i.e., Ii=lx'i "x,.,]. Then it is obvious that J;EH\,
Hence I; c IHI'

([3) I i EK2• i.e., 1;= (Xli ,.X,,]. Then it follows from property (b)(iii)
that there exist subintervals 11;U ; u satisfying I; E C \. j = i-,ll" ... i and
li_IlEKI.Ii_Il+I,... ,Ji_IcK2' We conclude from Lemma 3.12 that there
exists an interval 1=!x""x";ull!cI,L_IlU/; ,,+1' where x"" ,~
x"' < XI'i U-I and IJI - vi - Il <...m such that 1 associated with a critical point
set of f - go relative to Sm(l)· Then it follows from the construction of IH,

that l1i-" U I j _" + If c 1H,' A repeated application of these arguments shows
that ~Ii _ Il U ... U I;} c IIl,' Ii E K 3 can be similarly handl~d.

(I) Ii E K4 , i.e., I; = (x" , Xl')' Then it follows from the assumption
(b)(iii) and the arguments i~ I (/3) I that there exists a subinterval 1\ =
Ix" Xl' I C iii' We apply Lemma 3.12 to II. Ii and obtain a subinterval
[2 = l;~:, Xl) E K 1 such that [2 is associated with a critical point set of
f - go relative to Sm(I2), where X r ~ x"' < x"; and IJ\ - ~';_.\ < m. Then it
follows from ([3) that 12 c I Il,' We conclude from '7 I - Vi _ I < m that II U
licIIl,· Therefore Ic , clIl ,. Moreover, we have IU - go)(x)1 < 01 for all X E
Tn (!VIlJ Thus we obtain 1c, = I III . Now_we consider the approximation
problems corresponding to the subsets Gi of Definition 3.8. Let 0; =
maxj {Y/ Yj < 0i_l f for i ~ 2. Using the above arguments we are able to show
that Ic i = IH, and a is a best approximation from S m(I\!Hi') to f - goon
Tn l1\/Hi_'} for i = 2, ... , r. Hence go is a function satisfying the properties of
Definition 3.8. Therefore, go is the strict approximation.

A modification of Definition 3.8 yields a partition of the interval satisfying
the properties of Theorem 3.10.

DEFINITION 3.13. Let .d={xd7oe~ and I=[xo,xk+IJ be given. Let
Sm(I) = span{M -m+ I,... , Md, where jMd is a local basis. Suppose that Tis
a finite subset of I.

Set Go = Sm(l, T), To = 0 and let 2 0 be the set of integers {-m + 1.. .. , kf·
Then we define for j ~ I the following sequence of functions Sj:

Let Gj be the set of best approximations to the function f-
(SI + ... + Sj_l) (i.e.,fifj= I) on Tn l1\l-\f out of span{jM;};EZ_ } and_ . _ I I

let Sj be a function in Gj . Suppose that Ii is a subinterval of !\Ij _ l which is
associated with a critical point set off ..-: (s I + .. , + s). Then we define Ii =
~_\ U I j and
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This construction is continued until Zt = 0 for some t. We denote by g(f)
the function SI + ... + St.

COROLLARY 3.14. The function g(f) of Definition 3.13 is the strict
approximation and the subintervals Ii are a partition satisfying the properties
of Theorem 3.10.

Proof It follows from the construction of Definition 3.13 that the
partition {Iii satisfies the conditions of Theorem 3.10. Therefore g(f) is the
strict approximation.

4. ApPROXIMATIONS ON AN INTERVAL

In this section we want to consider an approximation problem which is
defined on an interval, i.e., T= [a,b] = [XO,Xk + I ]. If we apply the
construction of Definition 3.13 to this case then we shall not obtain a
function which is uniquely determined in general. We shall see the difficulties
in the following example:

Let Problem AI of Section 3 be given, let T= [x_m+pxn] and f be a
function in C(T). Therefore we consider the best approximations to f out of a
subspace spanned by B-splines. It is possible that there does not exist a
critical point set in 1= (x _m+ P X n)' Then a boundary point x _m+ I or xn is a
critical point set and the deviation of the best approximation is If(x-m+I)1 or
If(xn)l because s(x_ m+I) = s(x,,) = 0 for all s E Sm(i, T). In this case the
best approximations are uniquely determined only in one boundary point in
general. Therefore we cannot apply the construction of Definition 3.13. We
see that the critical point set is not contained in I

The construction can only be applied to a subset of C[a, b].
Let Lf = {xd7~J and T= [XO'Xk + l ] = [a,b] be given. Then Sm(I, T)=

Sm(Lf).
The construction of Definition 3.13 is possible for a function fEe [a, b] if

f satisfies the following conditions.
Let Gj be the set of best approximations as in Definition 3.13. We assume

that there exists a subinterval I j of M -I which is associated with a critical
point set off - (s I + ... + Sj) for all j. We have seen in the above example
that this condition is not satisfied in general.

Then the construction of Definition 3.13 defines a unique function
g(f) E Sm(Lf).

We denote the set of functions f in C [a, b] satisfying the above conditions
by era, b].

THEOREM 4.1. Let a function f in C[a, b] and the subspace Sm(Lf) be

640/41/4-3
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given. Then there exists a function go in Sm(Ll) such that the following
assertions are true:

(a) There exists a partition of the interval Xo= x"o < x,') < .,. < xl'" <
X"Ii.) = x k + 1 such that the subintervals Ii = Il'i ). "f satisfy:

(i) I=U7:ili ,IJ1Ii + I =0foralli=I,... ,h.

(ii) 0 is the unique best approximation from Sm(li) to U - go) on
T i , where Ti = Ix,", ,xv,] and there exists a critical point set R i C Ii which is

I-I I

associated with IJor all i = I,... , h + 1.

(iii) Let Yi = maxxET 1(1 ~ go)(x)l· Then for all i = L. ... h the
following conditions will hold: If X"i E Ii then Ii;;? Yi"-I and if X'i E Ii t 1 then

Yi ~ Yi+ I'

(b) The function go is the strict approximation to f on the subset R =
U7~/ R i , where R i are the critical point sets of (a).

Proof (a) It follows from the construction of Definition 3.13 that there
exists a function go satisfying (i}-(iii).

(b) The function go IR satisfies the conditions of Theorem 3.10.
Therefore go is a strict approximation for the problem defined on R.

Strict approximations are not defined for continuous problems. Since the
function go of Theorem 4.1 corresponding to a function f E Cia, b I is also a
strict approximation on a finite subset of [a, bI we shall call this function a
strict approximation for the continuous problem.
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